RELACS has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773431. The information contained in this communication only reflects the author’s view.
Authors

• Lucius Tamm (coordinator), Else Bünemann, Florian Leiber, Joelle Herforth, Veronika Maurer
• Ilaria Pertot
• Annegret Schmitt
• Vincenzo Verrastro
• Jakob Magid
• Kurt Möller
• Spiridoula Athanasiadou
• Catherine Experton
• Håvard Steinshamn
• Bram Moeskops
RELACS in a nutshell

- **Replacement of Contentious Inputs in Organic Farming Systems**

- Evaluate solutions to further reduce the use of external inputs and, if needed, develop and adopt cost-efficient and environmentally safe tools and technologies to:
 - Reduce the use of copper and mineral oil in plant protection
 - Identify sustainable sources for plant nutrition
 - Provide solutions to support livestock health & welfare

- Builds on results of previous research projects & takes far-advanced solutions forward

- 29 partners from thirteen countries: research, farming, advisory services & industry
Partners

• 13 European countries
• 15 partners
• 11 research organisations
• 1 dissemination partner
• 3 SMEs
• 14 linked parties
• 11 farmer organisations
• 3 research organisations
Aims

• Reduce the use of external inputs in organic farming systems, namely:
 • Copper & mineral oil for plant protection
 • Recycled fertilizers and conventional manure in plant production
 • Antibiotics & anthelmintic drugs in animal production
 • Synthetic/GMO produced vitamin B & E in animal feed

• Promote the development and adoption of environmentally safe and economically viable technologies & tools

• Covers all major sectors of organic farming, including horticulture, arable cropping as well as cattle, sheep, pig and poultry production

• Diverse needs in the different European countries and regions are considered
Approach & methodology

- Inter- & transdisciplinary multi-actor approach
- Involving end-users, industry & scientists
- Four growing seasons for field trials, on-farm evaluation and demonstration
- 6 Research & development packages
 - Plant production (WP 1-3)
 - Livestock production (WP 4-6)
- Development of EU policies (WP7): roadmaps
- Outreach & technology transfer (WP8): website, social media, policy briefs, practice abstracts, (news) articles, study visits, events, educational training
- Consortium & project management (WP9)
RELACS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773431. The information contained in this communication only reflects the author’s view.

RELACS: structure of the project

- **R&D WPs1-6**
 - **Plant production**
 - Replacing copper, mineral oil and contentious fertilizers and manure
 - WP1, WP2, WP3
 - **Livestock production**
 - Replacing anthelmintics, antibiotics and synthetic vitamins
 - WP4, WP5, WP6

- **Science-practice dialog to develop relevant EU policies**
 - WP7
 - Comprehensive overview on contentious inputs and policy instruments for reduction
 - Comparative assessment of socio-economic and environmental impacts of alternatives
 - Roadmaps for phasing out of contentious inputs in plant and livestock production

- **Multi-actor approach**
 - farmer organisations
 - advisory services
 - inspection bodies
 - Multi-actor approach

- **Dissemination WP8**
 - Coordination and project management WP9

- **Overview on single contentious inputs in plant and livestock production**
- **Alternative strategies: identification, adaptation, validation**
- **Socio-economic, environmental and acceptability assessment**
- **Roadmaps for Replacement of contentious inputs in organic plant and livestock production**
Process for R&D WPs explained

Data collection from national programmes

- Identify current uses and current and future needs
- Develop & further customize available alternatives
- Develop new alternatives
- Test alternatives on station / on-farm

Socio-economic evaluation

RELACS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773431. The information contained in this communication only reflects the author’s view.
Example:
WP4 - Reduction of anthelmintic use in sheep

Spiridoula Athanasiadou, SRUC (WP-leader)
Veronika Maurer, FiBL (deputy)
Use and need for anthelmintics, now and in the future

• Current parasite management strategies
 • Anthelmintic use
 • Integration of alternative controls
• Need for anthelmintics
 • Infection intensity
• Farmer perceptions
 • Anthelmintic resistance
 • Future of control
 • Labour / economic restraints

Data collection sources

- Expert opinion
 - IFOAM-EU associated agricultural advisors
 - Farmers associations e.g. Naturland, Soil Association: focus group discussions

- Literature review

- Research projects
 - Small ruminants: ProPara, Swiss monitoring programme
 - Cattle: ProPara, FEVEC
 - Laying hens: HealthyHens, FiBL monitoring
 - Pigs: CorePIG
Develop & further customize available alternatives

- Tanniferous forage plants (e.g. sainfoin) are used for their anthelmintic effects
- Heather grows in different areas and contains tannins
- Anthelmintic effects of heather from origins across Europe?
Develop new alternatives

- Nematophagous fungus *Duddingtonia flagrans* is a biocontrol agent for GIN
- Highly efficient
- Promising component of future control concepts
- Registration in preparation
- Several questions remain open
- Interactions with diet?

E. Perler, FiBL
Test alternatives *in vitro*, on station and on-farm

In vitro
- Testing efficacy of different heather origins and *Duddingtonia flagrans* strains

On station
- Quantification of combined antiparasitic efficacy of heather and *Duddingtonia flagrans*
- 2x2 factorial experiment at experimental farm

On farm
- Adaptation of the alternative strategies to local conditions in focus group discussions
- Split-farm tests of alternatives in UK, F, DE, CH
- Parameters: Weight gains, finishing times, FEC, anthelmintic drench need
Socio-economic evaluation

a) Data from on-farm tests
b) Results from focus group discussions

• Efficacy,
• Profitability,
• Sustainability,
• Scalability

of the alternative treatments.
Outcomes & achievements
<table>
<thead>
<tr>
<th>WP</th>
<th>Main outcome/achievement</th>
<th>Targeted end-users</th>
<th>Initial TRL</th>
<th>Target TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 fungicides for disease control and implementation of 2-3 low/no copper strategies for current commercial grapevine, apple and glasshouse crops.</td>
<td>Farmers, advisors</td>
<td>7-8</td>
<td>8-9</td>
</tr>
<tr>
<td>2</td>
<td>2 insecticides to complement agronomic and biological approaches for pest control to avoid the use of mineral oils</td>
<td>Farmers, advisors</td>
<td>6, 8</td>
<td>8, 9</td>
</tr>
<tr>
<td>2</td>
<td>1 acoustic tool for pest control to complement agronomic and biological approaches to avoid the use of mineral oils</td>
<td>Research, industry</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>1 software tool: Planning tool to match nutrient sources with nutrient needs</td>
<td>Farmers, advisors, research</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>1 biocontrol agent for endoparasite control</td>
<td>Farmers, advisors</td>
<td>7</td>
<td>8-9</td>
</tr>
<tr>
<td>4</td>
<td>Validation of tannin-rich feedstuff/heather from 4 European regions for endoparasite control</td>
<td>Research</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Validation of 2-3 essential oils for mastitis control</td>
<td>Farmers, advisors, research</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1 extended AHWP protocol, and a range of validated problem-solving strategies, adapted to various European pedo-climatic conditions.</td>
<td>Farmers, advisors</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>1 Vitamin B2-producing strain</td>
<td>Research, industry</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>2 revised norms on requirements for vitamins in livestock production</td>
<td>Farmers, advisors, research</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>WP</td>
<td>Main outcome/achievement</td>
<td>Targeted end-users</td>
<td>Initial TRL</td>
<td>Target TRL</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 7 | • Inventory on current uses of contentious inputs and policy instruments for reduction
 • Comparative assessment of socio-economic and environmental impacts of alternatives as compared to current farming practices.
 • Roadmaps for phasing out priority contentious inputs based on high-quality, fact-based dialogue between the multiple stakeholders related to the organic sector. | Farmers, advisors, research, policy makers | 1 | 2 |
| 8 | • Website
 • Policy briefs
 • EIP-AGRI Practice abstracts
 • Dissemination material | Farmers, advisors, research, policy makers | 7 | |
RELACS has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773431. The information contained in this communication only reflects the author’s view.
Thank you for your attention!

Find us online

- www.relacs-project.eu
- twitter.com/RELACSeu
- facebook.com/RELACSeu
@RELACSeu

Other channels:

- Subscribe to FiBL’s newsletter
- Subscribe to IFOAM EU’s newsletter
- Contact the project coordinator: Lucius Tamm